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Abstract Aquaporins (AQPs) are a family of channel

proteins, which transport water and/or small solutes across

cell membranes. AQPs are present in Bacteria, Eukarya,

and Archaea. The classical AQP evolution paradigm

explains the inconsistent phylogenetic trees by multiple

transfer events and emphasizes that the assignment of

orthologous AQPs is not possible, making it difficult to

integrate functional information. Recently, a novel phylo-

genetic framework of eukaryotic AQP evolution showed

congruence between eukaryotic AQPs and organismal trees

identifying 32 orthologous clusters in plants and animals

(Soto et al. Gene 503:165–176, 2012). In this article, we

discuss in depth the methodological strength, the ability to

predict functionality and the AQP community perception

about the different paradigms of AQP evolution. Moreover,

we show an updated review of AQPs transport functions in

association with phylogenetic analyses. Finally, we discuss

the possible effect of AQP data integration in the under-

standing of water and solute transport in eukaryotic cells.
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General Background of Aquaporins

Osmolarity and the corresponding water movement repre-

sent one of the crucial environmental factors that lead to

cellular homeostasis. For many years, water was consid-

ered to enter and leave the cells exclusively through the

lipid membrane. It was proposed later, the existence of

hydrophilic pores that would facilitate water and ion

transport through the membranes (Stein and Danielli 1956).

Those pores were later named aquaporin (AQP) (Preston

et al. 1992). Since then more than 7,000 articles have been

indexed under the tag ‘‘aquaporin’’ in PubMed resulted in a

detailed picture of what a water channel is. AQPs are not

only specific water channels but also solute transporters;

i.e., most AQPs transport other molecules such as glycerol,

urea, and arsenic, among others.

AQPs are transmembrane channels. Thus, the ability of

a molecule to cross an AQP channel depends on its own

characteristics (size, polarity, charge) and on the features of

the AQP involved. As other channels relevant in physiol-

ogy, AQPs are passive transporters. Water crosses an AQP
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channel or a lipid membrane, and in both cases the driven

force for the movement of water molecules is the osmotic

gradient. However, the kinetics of water transport depends

on the permeability characteristics of each pathway, gen-

erally being AQPs more permeable than the lipid bilayer,

which implies that AQPs allow a passage of larger flow of

water in shorter time intervals.

The Perception of AQPs as a Protein Family

Since the discovery of mammalian AQPs in 1992 and until

now much effort has been made to understand the structure

and function of AQPs. However, the idea of AQPs as a

protein family was formally introduced with a phylogenetic

analysis of putative proteins that can transport water and

solutes in bacteria and eukaryotes, hypothetically evolu-

tionarily related to previously characterized AQPs (Zardoya

and Villalba 2001). In this work, it was showed for the first

time a powerful bioinformatic tool, where a putative func-

tional domain was used to automatically identify new AQPs.

This superfamily of integral membrane channel proteins was

called major intrinsic protein (MIP). Although this work

constituted a fundamental step in the understanding of the

structure and function of AQPs, it also introduced confusion

regarding the definition of AQPs as a family of proteins. This

probably occurred because the MIP superfamily is a struc-

tural and a functional family with no clear evidence of being

a family of homologous genes. As will be discussed later, a

phylogenetic analysis using several proteins and showing

congruence (same topology) between gene and species trees

is a strong evidence for the presence of an evolutionary

family; but this type of congruence was not reported for the

AQP family. The AQP family could be constituted by non-

homologous proteins with similar structure and motifs due to

evolutionary convergence.

The lack of precision described above continues to exist.

Here, we discuss the consequences of assuming, when

reconstructing AQPs’ history, that AQPs are a family of

monophyletic proteins affecting the classification of AQPs

and prediction of their function.

Structure and Motifs in AQPs

As previously mentioned, the AQP denomination is linked to

the MIP definition. But what is the MIP superfamily? MIP is

considered a conserved domain (cd00333) by The National

Center for Biotechnology Information (Marchler-Bauer

et al. 2013). According to this definition, the MIP super-

family is divided into two families based on the distinct

primary sequences: AQPs and glycerol uptake facilitators

(GlpFs) (Zardoya and Villalba 2001). However, there is no

clear division between families in terms of functionality;

therefore, MIP and AQPs are considered synonymous and

are used interchangeably. MIPs have six transmembrane

helices (TMH1–6) and two additional membrane-embedded

domains (Maurel et al. 1993) (Fig. 1). The monomeric MIP

units contain functional pores that can be stably assembled as

tetramers (Verbavatz et al. 1993) (Fig. 2). Nevertheless, it

was demonstrated that each monomer in the tetramer is a

functional unit (Preston et al. 1992).

The sequences of the amino- and carboxy-terminal

halves of MIP genes are similar to each other and are

arranged as tandem repeats, apparently originated from the

duplication of a half-sized gene (Quigley et al. 2002;

Zardoya and Villalba 2001). Each half of the molecule

bears one hydrophobic loop which includes two highly

conserved Asn–Pro–Ala (NPA) motifs (Fig. 1) involved in

the primary selectivity of these transporters (Johanson et al.

2001; Zardoya and Villalba 2001). NPA motifs play a

critical function in charge and size obstacle (Wallace and

Roberts 2004). After the first NPA motif, there is a second

motif known as aromatic/arginine (ar/R) constriction (for

comprehensive review see Wu and Beitz 2007). This motif

is composed of four residues, two from the helices 2 (H2)

and 5 (H5) and two from loop E (LE1 and the invariant R;

Fig. 1). This filter seems to be the narrow part of the pore,

involved in the rejection of large molecules (Fu 2000;

Gomes et al. 2009; Sui et al. 2001; Wallace and Roberts

2004). It has been proposed that the selectivity of the ar/R

constriction region is related to proton repulsion and to the

binding, through hydrogen bonds, to uncharged molecules

such as water and glycerol (Wallace and Roberts 2004).

One further step forward in the selectivity, i.e., the dis-

crimination between molecules such as water and glycerol,

seems to be given by the P1–P5 motif, which is composed

of five amino acid residues located in extracellular loop

regions and integral membrane domains of AQPs (Fig. 1).

Finally, the AEF motif (Ala–Glu–Phe) is located in the

TMH1 of AQPs (Fig. 1) (Zardoya and Villalba 2001).

Although this motif is conserved in AQP proteins, its

function is still unknown. Regarding AQPs gating and/or

regulation, some AQP, are regulated by protonation

(Tournaire-Roux et al. 2003). It has been described that

protonation (but also, phosphorylation and cation binding)

directly affects protein conformation, modifying their

transport activity. For the plant AQP SoPIP2;1, the

mechanism of a transition from an open to a closed state

involves the protonation of conserved histidine residues

that moves the LD loop to a position that blocks the water

pore (Hedfalk et al. 2006). However, the gating mecha-

nisms for other AQPs are not yet clear. It has been

described another putative pH sensing motif -lHuuu (-:

acidic residue, l: hydrophobic residue, H: histidine, u:

polar non-charged residue) that is located in the

108 J. Perez Di Giorgio et al.: Prediction of Aquaporin Function

123



intracellular LD loop of many plant AQPs and in the

extracellular LC loop of Arabidopsis thaliana TIP5;1 (Soto

et al. 2010). However, the functional validation of this

motif in the external and internal sense of pH changes

remains to be explored in more detail. AQPs can also form

homo- or hetero-oligomers (Jozefkowicz et al. 2013; Neely

et al. 1999; Zelazny et al. 2007), but the conditions and/or

the motifs involved are not completely understood. Despite

the identification of new specific AQPs motifs (e.g. AEF,

ar/R, and P1–P5–lHuuu) described through the last dec-

ade, the NPA residues and the six TMHs are still the ones

used to identify new classes of putative AQPs.

Classical Clustering of AQPs

AQPs are present in the three domains of life: Bacteria,

Eukarya, and Archaea. In Eukarya, the greatest AQP family

diversification occurred in vertebrates and plants. While the

classification of animal AQPs (AQP0–12) is broadly consis-

tent and reflects their evolutionary relationships, for plant

AQPs is different. In plants, AQP subfamilies were initially

named and organized considering their putative subcellular

localization, but different subcellular localization within each

of the subfamilies has already been reported (for compre-

hensive reviews see Bienert and Chaumont 2013; Hachez

et al. 2013; Ishibashi et al. 2011; Wudick et al. 2009). Cur-

rently, plant AQPs are classified into seven subfamilies:

plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic

proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small

basic intrinsic proteins (SIPs), x intrinsic proteins (XIPs),

hybrid intrinsic proteins (HIPs), and GlpF-like intrinsic pro-

teins (GIPs) (Danielson and Johanson 2008; Johanson et al.

2001). However, as previously described for the bacterial and

eukaryotic AQPs, there is no work supporting the evolution-

ary integrity of the seven plant AQPs subfamilies.
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Fig. 1 Schematic representation of the classical structure of AQPs.

An AQP monomer showing the six transmembrane helices (TMH1–6)

connected by two intracellular (LB and LD) and three extracellular

(LA, LC and LE) loops. The conserved residues from the first

selective filter (NPA motifs) and the second filter (ar/R constriction)

are shown in red and blue, respectively. The P1–P5 residue positions

and the putative pH sensing motif—lHuuu are shown in red and

gray, respectively (Color figure online)
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Figure 3 shows the randomness of plant AQPs classifi-

cation at different levels such as individual proteins and

groups within subfamilies. After the release of new geno-

mic data, classification of novel AQPs was done using

different criteria. In some cases, new AQPs were named

according to the order of availability of the sequence in the

database, or to the amino acid identity regarding the AQPs

of A. thaliana as taxonomic criteria, while new phyloge-

netic trees containing reference proteins of Arabidopsis

and/or other plant species were built.

The Hypothetical Lateral Transfer of AQPs Between

Bacteria and Eukarya

In the recent years, several reports have suggested that all

proteins with a MIP functional domain from Bacteria and

Eukarya are actually homologous despite their very low

amino acid identity (e.g. \5 %). Under this assumption,

AQPs from extremely distant taxa (e.g., Bacteria and

Eukarya domains) have been included in the same phylo-

genetic tree (Fig. 4), obtaining incongruence (i.e. different

Fig. 2 Cartoon representation

of the crystal structure of the

spinach aquaporin SoPIP2;1

(Hedfalk et al. 2006) in an open

conformation to 3.9 Å

resolution (2B5F.PDB from

www.pdb.org). Side view (on

top) and end on view from the

extracellular surface of the tet-

ramer (bottom), each monomer

is indicated in a different color

(chain A in yellow, chain B in

green, chain C in blue and chain

D in red). MIP tridimensional

structure performed by the

Cn3D macromolecular structure

viewer software (http://www.

ncbi.nlm.nih.gov/Structure/

CN3D/cn3d.shtml). The MIP

structure consists of six trans-

membrane helical protein seg-

ments lying parallel to the

membrane plane (left). A view

showing the MIP pore oriented

nearly perpendicular to the

bilayer plane (right) (Color fig-

ure online)
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topology) between AQPs and organismal trees (Danielson

2010; Danielson and Johanson 2008; Heymann and Engel

1999; Johanson et al. 2001; Quigley et al. 2002; Zardoya

2005; Zardoya et al. 2002; Zardoya and Villalba 2001). It

has been suggested that these inconsistent patterns are due

to the existence of multiple lateral transfer events, such as

genetic exchange of AQP genes between unrelated organ-

isms, such as plants, vertebrates, and bacteria. For example,

it has been proposed that the animal AQP3 subfamily and

the plant NIP subfamily clusters were acquired by lateral

transfer, hypothetically derived from the glycerol facilita-

tor (EcGlpF) from Escherichia coli and bacterial NIP-like

proteins, respectively (Danielson 2010; Park and Saier

1996; Zardoya et al. 2002). Nevertheless, an unexpected

position of a protein within a phylogenetic tree may also be

explained by gene duplication, lineage-specific gene loss

events, and large amino acid distances (Andersson 2005;

Delsuc et al. 2005; Koonin 2003).
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Fig. 3 Nomenclature of plant aquaporins under Johansson et al. framework (2001) and the alternative view of this topology. Both possibilities

are arbitrary
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The relationships described between AQPs from Bacteria

and Eukarya are supported by statistics (high bootstrap val-

ues; Danielson 2010; Park and Saier 1996); this information

was used to support the lateral transfer hypothesis. However,

it is important to point out that obtaining a strongly supported

tree does not necessarily indicate that the tree is correct

(Delsuc et al. 2005). It is possible to obtain an inaccurate, but

statistically supported, phylogenetic tree if the method used

does not correctly handle the properties of the data (Delsuc

et al. 2005). To avoid overestimation of gene transfer, gen-

eral congruence with the organismal tree, except for the

transfer event, must be observed (Phillips 2006); it is also

necessary to find an independent evidence such as

localization within genomic islands (Ayub et al. 2007; Yan

et al. 2008), or to take advantage of powerful algorithms

specifically developed to statistically support gene transfer

events (Abby et al. 2010).

The comparative study of genomes from Bacteria and

Eukarya indicates that a major fraction of the genes in the

prokaryotic genomes have been acquired by horizontal

transfer (Koonin et al. 2001). The quantity of horizontal

transfer of genes is often associated with the microorganism

lifestyle. In addition, the transfer of genes in eukaryotic cells

is commonly associated with symbiotic or parasitic rela-

tionships with bacteria (Novichkov et al. 2004). Fixation and

long-term persistence of horizontally transferred genes
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imply that these genes present a selective advantage on the

recipient organism (Phillips 2006). Therefore, works pro-

posing the acquisition of bacterial genes in the eukaryotic

host should explore the evolutionary advantage of this

hypothetical transfer event. This exploration should consist

of empirical evidence predicting functionality.

In conclusion, lateral transfer of AQPs between Bacteria

and Eukarya could be an artifact. Thus, the inclusion of

these distant or unrelated proteins within the same phylo-

genetic tree (e.g. used as an out-group) can produce a

negative impact on the reconstruction of AQP evolution.

Essential Concepts for a Critical View of Evolutionary

Studies of AQPs

The most rigorous way to represent the evolutionary his-

tory is through the construction of phylogenetic trees. The

main assumption is that the genes analyzed within the tree

are homologous genes (Fig. 5). On the other hand, because

it is difficult to know which genes are actually homologous,

some type of approximation to preselect homologous genes

to be included in a phylogenetic tree is needed. The most

common approach is to constrain the phylogenetic analysis

to proteins that, as a whole, have more than 25 % of amino

acid identity (Hughes et al. 2005). But, no sampling cri-

terion (for example [25 % of amino acid identity) is suf-

ficient to ensure that two genes are homologous. It is

possible that two genes with high amino acid identity (e.g.

50 %) are non-homologous (by convergent evolution) or

genes with low amino acid identity (e.g. 30 %) are

homologous (by functional divergence). This type of cri-

teria (e.g. amino acid identity) is used because there is no

statistical elements to designate homology, and this occurs

because systematics is a historical science with particular

epistemological limitations (Cleland 2002). For example,
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the information used for the evolutionary reconstruction

arises from the observation, and not from the design and

execution of experiments. This means that, in many cases,

the results of phylogenetic analysis are accepted by the

scientific community but with certain precautions.

The divergence of orthologous genes coincides with and

is a product of the divergence of the species in which they

are included (Fig. 5). Naturally, orthologous genes are

evolutionarily more closely related and are therefore

expected to have a similar biological and biochemical

function. Robust methods for finding orthologs are based

on the analysis of phylogenetic trees. For orthologous

assignment, the trees have to be congruent (same topology)

with the species tree (Fig. 5).

Different phylogenetic reconstruction methods, such as

maximum parsimony, minimum evolution, and neighbor-

joining, are available within freely accessible evolutionary

software packages such as MEGA (Tamura et al. 2011).

These methods compare the nucleotide or amino acid

sequences using different parameters of genetic distance

and parsimony but, in all cases, independent of the

reconstruction method used, the number of possible phy-

logenetic trees increases exponentially with the number of

sequences (Li 1997). Since a congruent pattern is only one

topology, the probability that a congruent pattern occurs by

chance is practically null. For example, when a phyloge-

netic tree has only 20 sequences, the probability to obtain a

congruent pattern by chance (congruent pattern/possible

trees) is 1/2 9 1021 & 0 (Fig. 6).

As described previously works on AQP evolution con-

tained numerous inaccuracies in methods and/or

interpretation of results, but this does not imply that by

correcting these problems would be possible to obtain a

consistent phylogeny, especially considering that AQPs

constitute a broadly diversified family of genes.

The Novel Paradigm of AQP Evolution: Vertical

Transfer

In this complex background, the phylogeny of eukaryotic

AQPs has been recently re-evaluated by restricting the

analysis to proteins with high amino acid identity ([25 %)

and using sequences from well-characterized species of

flowering plants and vertebrates (Soto et al. 2012). Since

members of the subfamilies PIPs, TIPs, NIPs, and SIPs from

flowering plants and AQPs plus aquaglyceroporins from

vertebrates met the requirement of amino acid identity

([25 %), were included in the analysis. In contrast, the

subfamilies XIPs, GIPs, and HIPs were not analyzed

because they did not meet that requirement. As previously

explained, this result does not imply that the XIPs, GIPs, and

HIPs subfamilies are not homologous to the rest of eukary-

otic AQPs, but shows that it was not possible to analyze their

evolution according to the strict criterion of selection of

proteins included within a same phylogenetic tree.

This strict criterion has shown congruence between

AQPs (210 proteins) and organismal (13 species of

eukaryotes) trees (Soto et al. 2012). The probability of

finding a congruent pattern (vertical transfer) by chance

was practically null. The advantage of this new perspective

is that its congruence allowed defining clusters of
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Fig. 7 Schematic representation of orthologous gene clusters in plants based on Soto et al. (2012)
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Fig. 8 Schematic representation of orthologous gene clusters in animals according to Soto et al. (2012)
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orthologous genes for both flowering plants (19 clusters;

Fig. 7) and vertebrates (13 clusters; Fig. 8). This leads to

the description of specific conserved motifs for each

orthologous cluster as a useful tool for automatic assign-

ment of orthologs (Fig. 9) (Soto et al. 2012). The identi-

fication of conserved motifs in each subfamily and in each

cluster of orthologous genes offers a framework for

studying the possible functional implication of such motifs.

This is a powerful tool, and the availability of new gen-

omes of flowering plants and vertebrates could serve to

define these motifs more precisely.

This paradigm offers the opportunity to establish a new

classification of eukaryotic AQPs based on their evolu-

tionary relationships. In this way, the current nomenclature

differs significantly from a nomenclature based on the

identification of orthologous genes. Although the nomen-

clature is important per se, it also has significant influence

in the functional field. For example, given the current

nomenclature, AtPIP2;6 of Arabidopsis can be considered

the equivalent protein (ortholog) of OsPIP2;6 of Oryza

sativa, suggesting an equivalent role in both plants. How-

ever, AtPIP2;7 and AtPIP2;8 are equally related to Os-

PIP2;6 expecting similar functions for all these proteins

(Soto et al. 2012). Another advantage of having clusters of

orthologous genes is the possibility of evaluating evolu-

tionary constraints. The fact that PIPs have greater evolu-

tionary constraints than TIPs, NIPs, and SIPs, support the

prediction of greater functional constraints for PIPs (Soto

et al. 2012). In turn, some of the TIPs and NIPs orthologous

gene clusters also showed high evolutionary constraints,

suggesting functional constraints.

This AQP phylogenetic framework for flowering plants

and vertebrates can be used to predict a putative function of

individual AQPs on the basis of orthologous genes from A.

thaliana and Homo sapiens. However, the separate iden-

tification of clusters of orthologous genes in plants and

vertebrates does not allow extrapolating the function

between AQPs belonging to organisms of both kingdoms.

As previously suggested by other phylogenetic analyses

(Cerda and Finn 2010; Finn and Cerda 2011; Tingaud-

Sequeira et al. 2010), our phylogenetic framework revealed

that each subfamily of plant AQPs was related to a sub-

family of animal AQP, thus showing a pattern of vertical

transfer which predicts the presence of at least four families

of AQPs in the ancestral eukaryote from which plants and

vertebrates derived (Soto et al. 2012). We suggest that the

four AQPs subfamilies described in animals (AQP1-,

AQP8-, AQP3-, and AQP11-like) and plants (PIP-, TIP-,

NIP-, and SIP-like) are derived from four ancestral AQPs

subfamilies: A–D, respectively (Fig. 10). Thus, a pattern of

vertical transfer in the evolution of AQPs of animals and

plants at all levels, i.e., within (Figs. 7, 8) and between

kingdoms (Fig. 10), was observed.

Blue are hydrophobic residues: ACFILVWM
Fuchsia are large hydrophobic aminoacids: FIWLM
Green are polar aminoacids: NQST
Pink are negative residues: DE
Red are positive residues: KRHGPY
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Fig. 9 Motif characterization of plant aquaporins. Illustration of

amino acid motifs for each subfamily (PIPs, TIPs, NIPs, and SIPs)

and each orthologous cluster (CL). The letter X represents similar

amino acids. Blue, fuchsia, green, pink, and red letters represents

hydrophobic (ACFILVWM), large hydrophobic (FIWLM), polar

(NQST), negative (DE) and positive (KRHGPY) amino acids,

respectively (Color figure online)
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Fig. 10 Evolution of MIP superfamily in plants and animals. The

hypothetical ancestral eukaryote has four AQP subfamilies (AD)
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Functional Transfer of Eukaryotic AQPs Under

the Novel Evolution Paradigm

This new framework allowed the comparison for each

individual protein of the evolutionary patterns together

with the described functions. We previously showed a

correlation between the phylogenetic analysis and the

functional information of 47 AQPs (Soto et al. 2012).

Tables 1 and 2 describe the evolutionary location (sub-

families A–D), their current nomenclature, and molecules

that they transport, the organisms that contain them for 106

AQPs that showed strong correlation between evolutionary

and functional data.

AQPs of the subfamily A (PIP- and AQP1-like)

transport water and also CO2 as a common ancestral

feature. Afterward, some AQPs of this subfamily acquired

the capacity to transport other solutes, like glycerol, urea,

and hydrogen peroxide. Some AQPs show poor water

transport, however, they are permeable to anions as is the

case of AQP6 (Table 2). Among PIPs, PIP2s transport

water, whereas for PIP1s there is a great functional

divergence: some reports show that PIP1s do not form

functional homotetramers in plasma membrane (Fetter

et al. 2004; Zelazny et al. 2007), or that it transports CO2,

or that it has low water transport capacity (Table 1).

Several reports showed that PIP1 is localized in the

plasma membrane only when it is expressed together with

PIP2 (Bellati et al. 2010; Fetter et al. 2004); if it is

expressed alone, then it is retained in the endoplasmic

reticulum (Fetter et al. 2004; Jozefkowicz et al. 2013;

Zelazny et al. 2007). In this context, the possibility of

PIP1–2 hetero-oligomerization became a new way of

regulation of water transport.

AQPs of the subfamily B (TIP- and AQP8-like)

transport water and urea. However, many reports have

demonstrated that several Arabidopsis TIPs transport not

only urea but also ammonia (Table 1). In particular, as it

is discussed later, AtTIP5;1 is an urea transporter that

belongs to the most divergent cluster of Arabidopsis TIPs

(Soto et al. 2010), suggesting that this function could be

ancestral. Furthermore, the ability to transport hydrogen

peroxide could also be an ancestral feature, as several

members of this subfamily share this capacity. Interest-

ingly, new features appeared after functional divergence

because some AQPs of this subfamily transport glycerol

(Table 1).

AQPs of the subfamiliy C (NIP- and AQP3-like) are

named aquaglyceroporins because almost all members of

this group transport water and glycerol (Tables 1, 2). The

transport of metalloids may be an ancestral feature as many

plant NIPs and also AQP7 and -9 transport arsenite.

AQP10 was found to be expressed in the small intestine

and transport water, glycerol, and urea (Table 2). The fact

that urea and boric acid transport was observed only in the

animal and plant members of this subfamily, respectively,

suggest that the transport of glycerol and urea might not be

an ancestral feature but a putative event of functional

divergence. Additionally, it was reported that many NIP-

like AQPs transport other compounds, such as formamide

and lactic acid (Table 1).

AQPs of the subfamily D (SIP- and AQP11-like)

include the most recently identified AQPs. They are

unusual because only the second NPA motif located in

LE is conserved while the NPA motif in LB loop is

modified, such as NPC in AQP11 and AtSIP1;2 or NPT in

AQP12 and AtSIP1;1 (Soto et al. 2010). Also, their

N-terminal tail is shorter than the N-terminal of the rest of

the AQPs, a characteristic that has been assigned to

explain their intracellular localization (Maeshima and Is-

hikawa 2008). Due to this, it has been difficult to estab-

lish their transport substrate specificity when expressed in

Xenopus oocytes.

In summary, although AQPs from all subfamilies show

different pattern of solute transport, all AQPs are perme-

able to water and so, this can be considered the ancestral

feature shared by all the four subfamilies.

The potential of the proposed evolutionary framework in

the prediction of functionality of plants and animals AQPs

can be illustrated, with the example of the animal AQP8 and

plant TIPs both members of the subfamily B (Fig. 7).

Within TIPs, the cluster 7, includes AtTIP5;1 of A. thaliana,

which is the most divergent TIP and therefore the most

similar to the ancestral protein that gave rise to all TIPs

(Fig. 7). Therefore, the evolutionary framework predicts

that AQP8 would have a function equivalent to that of

TIP5;1. It was described that TIP5;1 is an urea transporter

located in pollen tube mitochondria when overexpressed in

the pollen vegetative cell of A. thaliana (Soto et al. 2008,

2010). Based on these results, it has been proposed that

AtTIP5;1 would be involved in the efflux of urea from

mitochondria during the urea cycle (Soto et al. 2010). The

urea cycle is well conserved in all living organisms

(Goldraij and Polacco 2000; Kojima et al. 2006; Mobley

et al. 1995; Pedrozo et al. 1996; Yu et al. 1997): urea is

synthesized by a mitochondrial arginase and degraded by a

cytosolic urease. Therefore, a mitochondrial transporter that

would export urea from the mitochondrion into the cytosol

has been predicted for many years discarding the possibility

of a passive transport (Rodela et al. 2008). Due to AQP8 is

the putative ortholog of AtTIP5;1 (Fig. 10), our phyloge-

netic framework predicts that AQP8 is involved in the urea

cycle in vertebrates as it was suggested previously (Cala-

mita et al. 2006, 2007; Holm et al. 2005; Liu et al. 2006;

Soria et al. 2013).
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Table 1 Functional characteristics of plants AQPs disaggregated by subfamily

H2O Gly NH4 Urea B As H2O2 CO2 I O References

SF A

AtPIP1;1 1 2 Hooijmaijers et al. (2012), Kammerloher et al. (1994)

AtPIP1;2 1 – 1 Heckwolf et al. (2011), Hooijmaijers et al. (2012), Kammerloher

et al. (1994), Tournaire-Roux et al. (2003)

AtPIP1;3 1 – Hooijmaijers et al. (2012), Kammerloher et al. (1994)

AtPIP1;4 – Hooijmaijers et al. (2012)

AtPIP1;5 – Hooijmaijers et al. (2012)

NtAQP1 1 1 1 2 Biela et al. (1999), Otto et al. (2010), Uehlein et al. (2003)

ZmPIP1;2 – Bienert and Chaumont (2013)

ZmPIP1;5 1 1 Gaspar (2003)

SsAQP1 – 1 Moshelion (2002)

AtPIP2;1 1 1/2 Bienert et al. (2007), Dynowski et al. (2008), Hooijmaijers et al.

(2012), Kammerloher et al. (1994)

AtPIP2;2 1 1 Hooijmaijers et al. (2012), Kammerloher et al. (1994), Tournaire-

Roux et al. (2003)

AtPIP2;4 1 1 Dynowski et al. (2008), Hooijmaijers et al. (2012)

AtPIP2;3 1 – Daniels et al. (1994), Hooijmaijers et al. (2012)

AtPIP2;5 1 1 Hooijmaijers et al. (2012)

AtPIP2;6 – Hooijmaijers et al. (2012)

AtPIP2;7 1 Hooijmaijers et al. (2012)

AtPIP2;8 – Hooijmaijers et al. (2012)

ZmPIP2;1 1 Fetter et al. (2004)

ZmPIP2;4 Fetter et al. (2004)

ZmPIP2;5 1 Bienert and Chaumont (2013), Chaumont et al. (2001), Fetter et al.

(2004)

McPIP2;1 1 – – Amezcua-Romero et al. (2010)

SoPIP2;1 1 Johansson et al. (1998)

SsAQP2 1 – Moshelion (2002)

OsPIP2;1 1 Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;2 1 Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;3 1 Matsumoto et al. (2009), Mosa et al. (2012), Sakurai et al. (2008)

OsPIP2;4 1 1 Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;5 1 Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;6 1 1 Matsumoto et al. (2009), Mosa et al. (2012)

OsPIP2;7 1 1 Matsumoto et al. (2009), Mosa et al. (2012)

OsPIP2;8 1 Matsumoto et al. (2009)

NtPIP2;1 1 – Bots et al. (2005), Otto et al. (2010)

SF B

AtTIP1;1 ? – ? ? ? Bienert et al. (2007), Klebl et al. (2003), Liu et al. (2003), Maurel

et al. (1993)

TgTIP1;1 1 1 1 1 Azad et al. (2008, 2012)

AtTIP1;2 ? ? Bienert et al. (2007), Liu et al. (2003)

OsTIP1;2 ? ? Li et al. (2008), Sakurai et al. (2008)

TgTIP1;2 ? ? ? ? Azad et al. (2008, 2012)

AtTIP1;3 ? - ? – Soto et al. (2008)

AtTIP2;1 ? ? ? Klebl et al. (2003), Liu et al. (2003), Loque et al. (2005), Maurel

et al. (1993)

OsTIP2;1 ? ? Li et al. (2008)

TaTIP2;1 ? ? ? ? Holm et al. (2005), Jahn et al. (2004)

TaTIP2;2 ? ? Bertl and Kaldenhoff (2007)
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Table 1 continued

H2O Gly NH4 Urea B As H2O2 CO2 I O References

AtTIP2;3 ? ? ? Dynowski et al. (2008), Loque et al. (2005)

AtTIP3;1 ? Eckert et al. (1999)

OsTIP3;2 – ? Li et al. (2008)

OsTIP4;1 ? ? Li et al. (2008)

AtTIP5;1 ? – ? – Soto et al. (2008)

NtTIPa ? ? ? Gerbeau et al. (1999)

SF C

AtNIP1;1 ? ? ? – ? Dynowski et al. (2008), Kamiya and Fujiwara (2009), Kamiya et al.

(2009), Weig and Jakob (2000)

AtNIP1;2 ? 1 Dynowski et al. (2008), Weig and Jakob (2000)

AtNIP2;1 ? ? ? ? Choi and Roberts (2007), Mizutani et al. (2006)

AtNIP4;1 ? Soto et al. (2008)

AtNIP5;1 ? ? ? ? Bienert et al. (2008), Mitani-Ueno et al. (2011), Takano et al.

(2006)

AtNIP6;1 – ? ? ? ? ? Bienert et al. (2008), Tanaka et al. (2008), Wallace and Roberts

(2005)

AtNIP7;1 ? ? ? ? ? ? Bienert et al. (2008), Li et al. (2011)

CpNIP1 ? Klebl et al. (2003), Liu et al. (2003)

GmNOD26 ? ? ? – – – ? Dean et al. (1999), Hwang et al. (2010), Rivers et al. (1997),

Schnurbusch et al. (2010), Wallace et al. (2012)

HvNIP2;1 ? – ? ? ? Ligaba et al. (2011), Schnurbusch et al. (2010)

LjLIMP2 ? ? ? Guenther and Roberts (2000)

LjNIP5;1 ? ? Bienert et al. (2008)

LjNIP6;1 ? ? Bienert et al. (2008)

OsNIP1;1 ? Ma et al. (2008)

OsNIP2;1 ? ? ? ? ? Mitani-Ueno et al. (2011), Mitani et al. (2008)

OsNIP2;2 ? – ? ? Bienert et al. (2008), Ma et al. (2006, 2008), Mitani-Ueno et al.

(2011), Mitani et al. (2008)

OsNIP3;1 ? Ma et al. (2008)

OsNIP3;2 ? ? Bienert et al. (2008)

PsNIP1;1 ? ? Schuurmans et al. (2003)

PtNIP1;1 ? ? Ciavatta et al. (2001)

TaNIP2;1 ? Montpetit et al. (2012)

ZmNIP2;1 ? ? Gu et al. (2012), Mitani et al. (2009)

ZmNIP2;2 ? Mitani et al. (2009)

ZmNIP2;4 ? Gu et al. (2012)

SF D

AtSIP1;1 ? Ishikawa et al. (2005)

AtSIP1;2 ? Ishikawa et al. (2005)

AtSIP2;1 – Ishikawa et al. (2005)

?, presence; -, absence; ?/-, controversy between authors. Plants: At, Arabidopsis thaliana; Cp, Cucurbita pepo; Gm, Glycine max; Hv,

Hordeum vulgae; Lj, Lotus japonicus; Mc, Mesembryanthemum crystallinum; Nt, Nicotiana tabacum; Os, Oryza sativa; Ps, Polygonum sibir-

icum; Pt, Pinus taeda; So, Spinacia oleracea; Ss, Samanea saman; Ta, Triticum aestivum; Tg, Tulipa gesneriana; Zm, Zea mays

SF subfamily, Gly glycerol, B boric acid, As arsenic, I ions, O other compounds (e.g., formamide and lactic acid)
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Table 2 Functional characteristics of vertebrates AQPs disaggregated by subfamily

H2O Gly NH4 Urea B As H2O2 CO2 I O References

SF A

BtAQP0 ? ? Mulders et al. (1995), Yang and Verkman (1997), Zampighi et al.

(1985)

HsAQP0 ? ? Chandy et al. (1997)

DrAQP0 ? Froger et al. (2010)

SaAQP0a ? Chauvigne et al. (2013)

RnAQP1 ? ? – ? ? – Abrami et al. (1995), Li et al. (2011), Ma et al. (1993), Marinelli

et al. (1997)

DrAQP1 ? – – Tingaud-Sequeira et al. (2010)

HsAQP1 ? ? ? ? ? Abrami et al. (1995), Endeward et al. (2006), Preston et al. (1992),

Anthony et al. (2000), Herrera et al. (2006), Musa-Aziz et al.

(2009), Nakhoul et al. (1998), Prasad et al. (1998)

SaAQP1aa/

ab

? Chauvigne et al. (2013)

HsAQP2 ? ? – – – Abrami et al. (1995), Fushimi et al. (1993), Geyer et al. (2013),

Meinild (1998), Yang and Verkman (1997)

DrAQP4 ? Tingaud-Sequeira et al. (2010)

RnAQP4 ? ?/- – – ? Fenton et al. (2010), Geyer et al. (2013), Jung et al. (1994), Meinild

(1998), Musa-Aziz et al. (2009), Yang and Verkman (1997)

RnAQP4 ? – – – – Fenton et al. (2010), Geyer et al. (2013)

RnAQP5 ? Raina et al. (1995), Yang and Verkman (1997)

HsAQP5 ? – – ? Meinild (1998), Musa-Aziz et al. (2009)

HsAQP6 ? ? ? ? ? Holm et al. (2004), Liu et al. (2006), Ma et al. (1996)

RnAQP6 – ? ? ? ? Geyer et al. (2013), Hazama et al. (2002), Ikeda et al. (2002), Liu

et al. (2006), Yasui et al. (1999)

SF B

HsAQP8 ? – ? – ? – ? Bienert et al. (2007), Geyer et al. (2013), Jahn et al. (2004), Liu

et al. (2006)

RnAQP8 ? ?/- ? ?/- ? Holm et al. (2005), Ishibashi et al. (1997), Koyama et al. (1997),

Liu et al. (2006)

DrAQP8 ? – ? Tingaud-Sequeira et al. (2010)

SaAQP8b ? ? Chauvigne et al. (2013)

SF C

RnAQP3 ? ? ? ? ? – – ? Echevarria et al. (1994), Geyer et al. (2013), Hara-Chikuma et al.

(2012), Holm et al. (2005), Ishibashi et al. (1994), Meinild

(1998), Yang and Verkman (1997), Zeuthen et al. (1997)

DrAQP3 ? ? ? ? Chauvigne et al. (2011), Tingaud-Sequeira et al. (2010)

HsAQP3 ? ? – ? Chauvigne et al. (2011), Liu et al. (2004)

HsAQP7 ? ? ? – Geyer et al. (2013), Liu et al. (2004)

MmAQP7 ? ? Liu et al. (2002)

RnAQP7 ? ? ? Ishibashi et al. (1997), Kishida et al. (2000)

DrAQP7 ? ? ? ? Chauvigne et al. (2011), Tingaud-Sequeira et al. (2010)

SaAQP7 ? ? ? Chauvigne et al. (2013)

RnAQP9 ? ? ? ? ? ? ? Geyer et al. (2013), Liu et al. (2002), Tsukaguchi et al. (1999)

DrAQP9 ? ? ? ? Chauvigne et al. (2011), Tingaud-Sequeira et al. (2010)

HsAQP9 ? Liu et al. (2004), McDermott et al. (2010)

SaAQP9b ? ? ? Chauvigne et al. (2013)

HsAQP10 ? ? ? – Hatakeyama et al. (2001), Ishibashi et al. (2002), Liu et al. (2004)

DrAQP10 ? ? ? Tingaud-Sequeira et al. (2010)

SaAQP10b ? ? ? Chauvigne et al. (2013)
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Conclusions and Prospects

The AQP vertical transfer hypothesis makes predictions that

are testable and refutable, as we have demonstrated

throughout the text so far. This new paradigm of evolution

of plant and animal AQPs offers a novel framework to

integrate functional information. It allows two distant

groups, the plant and animal AQPs, to work together and

support each other, especially in understanding water and

solute transport. Furthermore, the availability of new clus-

ters of orthologous genes and specific motifs associated

with such clusters offers a starting point for an in-depth

understanding of the consensuses and tridimensional

structures associated with the functional diversity of AQPs

in the specificity of transport, interaction among AQPs and

with other molecules, including regulation and subcellular

localization. In this context, it is expected that the new

consistent evolutionary framework of eukaryotic AQPs

increases the ability to properly predict biochemical and

biological functions of AQPs. Functional information of

individual AQPs by empirical studies is expected to grow

and more sequenced genomes of plants and animals are

expected to be available, positively influencing the defini-

tion and precision of motifs and functions of each cluster of

orthologous genes and each AQP subfamily. However, it is

necessary to point out that the extrapolation of functionality

has the intrinsic restriction of the biochemical and biolog-

ical diversification processes. For example, the extrapola-

tion of the biochemical and biological functions of the

ancestor of flowering plants is not always possible because

each of the clusters of orthologous genes in monocotyle-

donous and dicotyledonous plants evolved independently,

incorporating and eliminating various functions related to

AQPs. Similarly, although certain features of cell func-

tionality may have been conserved in all vertebrates, it is

not expected that the AQPs of fishes and mammals have

exactly the same biochemical and biological function,

especially when they are exposed to different environments

that would potentiate their functional divergence. Finally,

the future of the experimental study of AQPs seems to have

evolutionary guidance, which, despite its limitations con-

stitutes a solid road toward a better understanding of AQPs.
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