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Abstract Aquaporins (AQPs) are a family of channel
proteins, which transport water and/or small solutes across
cell membranes. AQPs are present in Bacteria, Eukarya,
and Archaea. The classical AQP evolution paradigm
explains the inconsistent phylogenetic trees by multiple
transfer events and emphasizes that the assignment of
orthologous AQPs is not possible, making it difficult to
integrate functional information. Recently, a novel phylo-
genetic framework of eukaryotic AQP evolution showed
congruence between eukaryotic AQPs and organismal trees
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identifying 32 orthologous clusters in plants and animals
(Soto et al. Gene 503:165-176, 2012). In this article, we
discuss in depth the methodological strength, the ability to
predict functionality and the AQP community perception
about the different paradigms of AQP evolution. Moreover,
we show an updated review of AQPs transport functions in
association with phylogenetic analyses. Finally, we discuss
the possible effect of AQP data integration in the under-
standing of water and solute transport in eukaryotic cells.

Keywords
Integration

Aquaporin - Evolution - Function -

General Background of Aquaporins

Osmolarity and the corresponding water movement repre-
sent one of the crucial environmental factors that lead to
cellular homeostasis. For many years, water was consid-
ered to enter and leave the cells exclusively through the
lipid membrane. It was proposed later, the existence of
hydrophilic pores that would facilitate water and ion
transport through the membranes (Stein and Danielli 1956).
Those pores were later named aquaporin (AQP) (Preston
et al. 1992). Since then more than 7,000 articles have been
indexed under the tag “aquaporin” in PubMed resulted in a
detailed picture of what a water channel is. AQPs are not
only specific water channels but also solute transporters;
i.e., most AQPs transport other molecules such as glycerol,
urea, and arsenic, among others.

AQPs are transmembrane channels. Thus, the ability of
a molecule to cross an AQP channel depends on its own
characteristics (size, polarity, charge) and on the features of
the AQP involved. As other channels relevant in physiol-
ogy, AQPs are passive transporters. Water crosses an AQP
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channel or a lipid membrane, and in both cases the driven
force for the movement of water molecules is the osmotic
gradient. However, the kinetics of water transport depends
on the permeability characteristics of each pathway, gen-
erally being AQPs more permeable than the lipid bilayer,
which implies that AQPs allow a passage of larger flow of
water in shorter time intervals.

The Perception of AQPs as a Protein Family

Since the discovery of mammalian AQPs in 1992 and until
now much effort has been made to understand the structure
and function of AQPs. However, the idea of AQPs as a
protein family was formally introduced with a phylogenetic
analysis of putative proteins that can transport water and
solutes in bacteria and eukaryotes, hypothetically evolu-
tionarily related to previously characterized AQPs (Zardoya
and Villalba 2001). In this work, it was showed for the first
time a powerful bioinformatic tool, where a putative func-
tional domain was used to automatically identify new AQPs.
This superfamily of integral membrane channel proteins was
called major intrinsic protein (MIP). Although this work
constituted a fundamental step in the understanding of the
structure and function of AQPs, it also introduced confusion
regarding the definition of AQPs as a family of proteins. This
probably occurred because the MIP superfamily is a struc-
tural and a functional family with no clear evidence of being
a family of homologous genes. As will be discussed later, a
phylogenetic analysis using several proteins and showing
congruence (same topology) between gene and species trees
is a strong evidence for the presence of an evolutionary
family; but this type of congruence was not reported for the
AQP family. The AQP family could be constituted by non-
homologous proteins with similar structure and motifs due to
evolutionary convergence.

The lack of precision described above continues to exist.
Here, we discuss the consequences of assuming, when
reconstructing AQPs’ history, that AQPs are a family of
monophyletic proteins affecting the classification of AQPs
and prediction of their function.

Structure and Motifs in AQPs

As previously mentioned, the AQP denomination is linked to
the MIP definition. But what is the MIP superfamily? MIP is
considered a conserved domain (cd00333) by The National
Center for Biotechnology Information (Marchler-Bauer
et al. 2013). According to this definition, the MIP super-
family is divided into two families based on the distinct
primary sequences: AQPs and glycerol uptake facilitators
(GIpFs) (Zardoya and Villalba 2001). However, there is no
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clear division between families in terms of functionality;
therefore, MIP and AQPs are considered synonymous and
are used interchangeably. MIPs have six transmembrane
helices (TMH1-6) and two additional membrane-embedded
domains (Maurel et al. 1993) (Fig. 1). The monomeric MIP
units contain functional pores that can be stably assembled as
tetramers (Verbavatz et al. 1993) (Fig. 2). Nevertheless, it
was demonstrated that each monomer in the tetramer is a
functional unit (Preston et al. 1992).

The sequences of the amino- and carboxy-terminal
halves of MIP genes are similar to each other and are
arranged as tandem repeats, apparently originated from the
duplication of a half-sized gene (Quigley et al. 2002;
Zardoya and Villalba 2001). Each half of the molecule
bears one hydrophobic loop which includes two highly
conserved Asn—Pro—Ala (NPA) motifs (Fig. 1) involved in
the primary selectivity of these transporters (Johanson et al.
2001; Zardoya and Villalba 2001). NPA motifs play a
critical function in charge and size obstacle (Wallace and
Roberts 2004). After the first NPA motif, there is a second
motif known as aromatic/arginine (ar/R) constriction (for
comprehensive review see Wu and Beitz 2007). This motif
is composed of four residues, two from the helices 2 (H2)
and 5 (HS) and two from loop E (LE1 and the invariant R;
Fig. 1). This filter seems to be the narrow part of the pore,
involved in the rejection of large molecules (Fu 2000;
Gomes et al. 2009; Sui et al. 2001; Wallace and Roberts
2004). It has been proposed that the selectivity of the ar/R
constriction region is related to proton repulsion and to the
binding, through hydrogen bonds, to uncharged molecules
such as water and glycerol (Wallace and Roberts 2004).
One further step forward in the selectivity, i.e., the dis-
crimination between molecules such as water and glycerol,
seems to be given by the P1-P5 motif, which is composed
of five amino acid residues located in extracellular loop
regions and integral membrane domains of AQPs (Fig. 1).
Finally, the AEF motif (Ala—Glu—Phe) is located in the
TMHI of AQPs (Fig. 1) (Zardoya and Villalba 2001).
Although this motif is conserved in AQP proteins, its
function is still unknown. Regarding AQPs gating and/or
regulation, some AQP, are regulated by protonation
(Tournaire-Roux et al. 2003). It has been described that
protonation (but also, phosphorylation and cation binding)
directly affects protein conformation, modifying their
transport activity. For the plant AQP SoPIP2;1, the
mechanism of a transition from an open to a closed state
involves the protonation of conserved histidine residues
that moves the LD loop to a position that blocks the water
pore (Hedfalk et al. 2006). However, the gating mecha-
nisms for other AQPs are not yet clear. It has been
described another putative pH sensing motif —pHoo@ (—:
acidic residue, p: hydrophobic residue, H: histidine, ¢:
polar non-charged residue) that is located in the
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Fig. 1 Schematic representation of the classical structure of AQPs.
An AQP monomer showing the six transmembrane helices (TMH1-6)
connected by two intracellular (LB and LD) and three extracellular
(LA, LC and LE) loops. The conserved residues from the first

intracellular LD loop of many plant AQPs and in the
extracellular LC loop of Arabidopsis thaliana TIP5;1 (Soto
et al. 2010). However, the functional validation of this
motif in the external and internal sense of pH changes
remains to be explored in more detail. AQPs can also form
homo- or hetero-oligomers (Jozefkowicz et al. 2013; Neely
et al. 1999; Zelazny et al. 2007), but the conditions and/or
the motifs involved are not completely understood. Despite
the identification of new specific AQPs motifs (e.g. AEF,
ar/R, and P1-P5-pHoo@) described through the last dec-
ade, the NPA residues and the six TMHs are still the ones
used to identify new classes of putative AQPs.

Classical Clustering of AQPs

AQPs are present in the three domains of life: Bacteria,
Eukarya, and Archaea. In Eukarya, the greatest AQP family

COOr

(0095000
388540844

selective filter (NPA motifs) and the second filter (ar/R constriction)
are shown in red and blue, respectively. The P1-P5 residue positions
and the putative pH sensing motif—pHo@¢ are shown in red and
gray, respectively (Color figure online)

diversification occurred in vertebrates and plants. While the
classification of animal AQPs (AQPO0-12) is broadly consis-
tent and reflects their evolutionary relationships, for plant
AQPs is different. In plants, AQP subfamilies were initially
named and organized considering their putative subcellular
localization, but different subcellular localization within each
of the subfamilies has already been reported (for compre-
hensive reviews see Bienert and Chaumont 2013; Hachez
et al. 2013; Ishibashi et al. 2011; Wudick et al. 2009). Cur-
rently, plant AQPs are classified into seven subfamilies:
plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic
proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small
basic intrinsic proteins (SIPs), x intrinsic proteins (XIPs),
hybrid intrinsic proteins (HIPs), and GlpF-like intrinsic pro-
teins (GIPs) (Danielson and Johanson 2008; Johanson et al.
2001). However, as previously described for the bacterial and
eukaryotic AQPs, there is no work supporting the evolution-
ary integrity of the seven plant AQPs subfamilies.
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Fig. 2 Cartoon representation
of the crystal structure of the
spinach aquaporin SoPIP2;1
(Hedfalk et al. 2006) in an open
conformation to 3.9 A
resolution (2B5SF.PDB from
www.pdb.org). Side view (on
top) and end on view from the
extracellular surface of the tet-
ramer (bottom), each monomer
is indicated in a different color
(chain A in yellow, chain B in
green, chain C in blue and chain
D in red). MIP tridimensional
structure performed by the
Cn3D macromolecular structure
viewer software (http://www.
ncbi.nlm.nih.gov/Structure/
CN3D/cn3d.shtml). The MIP
structure consists of six trans-
membrane helical protein seg-
ments lying parallel to the
membrane plane (left). A view
showing the MIP pore oriented
nearly perpendicular to the
bilayer plane (right) (Color fig-
ure online)

Figure 3 shows the randomness of plant AQPs classifi-
cation at different levels such as individual proteins and
groups within subfamilies. After the release of new geno-
mic data, classification of novel AQPs was done using
different criteria. In some cases, new AQPs were named
according to the order of availability of the sequence in the
database, or to the amino acid identity regarding the AQPs
of A. thaliana as taxonomic criteria, while new phyloge-
netic trees containing reference proteins of Arabidopsis
and/or other plant species were built.
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The Hypothetical Lateral Transfer of AQPs Between
Bacteria and Eukarya

In the recent years, several reports have suggested that all
proteins with a MIP functional domain from Bacteria and
Eukarya are actually homologous despite their very low
amino acid identity (e.g. <5 %). Under this assumption,
AQPs from extremely distant taxa (e.g., Bacteria and
Eukarya domains) have been included in the same phylo-
genetic tree (Fig. 4), obtaining incongruence (i.e. different
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Fig. 3 Nomenclature of plant aquaporins under Johansson et al. framework (2001) and the alternative view of this topology. Both possibilities

are arbitrary

topology) between AQPs and organismal trees (Danielson
2010; Danielson and Johanson 2008; Heymann and Engel
1999; Johanson et al. 2001; Quigley et al. 2002; Zardoya
2005; Zardoya et al. 2002; Zardoya and Villalba 2001). It
has been suggested that these inconsistent patterns are due
to the existence of multiple lateral transfer events, such as
genetic exchange of AQP genes between unrelated organ-
isms, such as plants, vertebrates, and bacteria. For example,
it has been proposed that the animal AQP3 subfamily and

the plant NIP subfamily clusters were acquired by lateral
transfer, hypothetically derived from the glycerol facilita-
tor (EcGlpF) from Escherichia coli and bacterial NIP-like
proteins, respectively (Danielson 2010; Park and Saier
1996; Zardoya et al. 2002). Nevertheless, an unexpected
position of a protein within a phylogenetic tree may also be
explained by gene duplication, lineage-specific gene loss
events, and large amino acid distances (Andersson 2005;
Delsuc et al. 2005; Koonin 2003).
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The relationships described between AQPs from Bacteria
and Eukarya are supported by statistics (high bootstrap val-
ues; Danielson 2010; Park and Saier 1996); this information
was used to support the lateral transfer hypothesis. However,
it is important to point out that obtaining a strongly supported
tree does not necessarily indicate that the tree is correct
(Delsuc et al. 2005). It is possible to obtain an inaccurate, but
statistically supported, phylogenetic tree if the method used
does not correctly handle the properties of the data (Delsuc
et al. 2005). To avoid overestimation of gene transfer, gen-
eral congruence with the organismal tree, except for the
transfer event, must be observed (Phillips 2006); it is also
necessary to find an independent evidence such as
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localization within genomic islands (Ayub et al. 2007; Yan
et al. 2008), or to take advantage of powerful algorithms
specifically developed to statistically support gene transfer
events (Abby et al. 2010).

The comparative study of genomes from Bacteria and
Eukarya indicates that a major fraction of the genes in the
prokaryotic genomes have been acquired by horizontal
transfer (Koonin et al. 2001). The quantity of horizontal
transfer of genes is often associated with the microorganism
lifestyle. In addition, the transfer of genes in eukaryotic cells
is commonly associated with symbiotic or parasitic rela-
tionships with bacteria (Novichkov et al. 2004). Fixation and
long-term persistence of horizontally transferred genes

PIPs

Arabidopsis thaliana (Q08733)

Qv?e AQPs

Arabidopsis thaliana (AAC49992)

TIPs

Bacterial AQPs

a

NIPs - bacterial AQPs cluster

Fig. 4 Schematic representation of evolutionary relationships between eukaryotic and bacterial MIPs based on previously phylogenetic analyses

(Zardoya and Villalba 2001)

@ Springer



J. Perez Di Giorgio et al.: Prediction of Aquaporin Function

113

EVOLUTION OF VERTEBRATES AND ITS GENES

ancestral
vertebrate

ancestral
gene

mammals

homologous genes
Ax-Ax
Bx-Bx
Ax-Bx
birds ortologous genes
in vertebrates
Ax-Ax or Bx-Bx

paralogous genes
in vertebrates
Ax-Bx

400 300
millionyears millionyears

CONGRUENT PATTERN BETWEEN ORTOLOGOUS CLUSTERS AND ORGANISMS

GENE TREE ORGANISMAL TREE
A1;1 mammals
ortologous
A1;2 birds ™ cluster1 mammals
A2  fish
birds
B1;1 mammals ]
. ortologous fish
B1;2 birds  Cluster2
B2  fish

Fig. 5 Schematic representation of homologous, orthologous, and paralogous genes

imply that these genes present a selective advantage on the
recipient organism (Phillips 2006). Therefore, works pro-
posing the acquisition of bacterial genes in the eukaryotic
host should explore the evolutionary advantage of this
hypothetical transfer event. This exploration should consist
of empirical evidence predicting functionality.

In conclusion, lateral transfer of AQPs between Bacteria
and Eukarya could be an artifact. Thus, the inclusion of
these distant or unrelated proteins within the same phylo-
genetic tree (e.g. used as an out-group) can produce a
negative impact on the reconstruction of AQP evolution.

Essential Concepts for a Critical View of Evolutionary
Studies of AQPs

The most rigorous way to represent the evolutionary his-
tory is through the construction of phylogenetic trees. The

main assumption is that the genes analyzed within the tree
are homologous genes (Fig. 5). On the other hand, because
it is difficult to know which genes are actually homologous,
some type of approximation to preselect homologous genes
to be included in a phylogenetic tree is needed. The most
common approach is to constrain the phylogenetic analysis
to proteins that, as a whole, have more than 25 % of amino
acid identity (Hughes et al. 2005). But, no sampling cri-
terion (for example >25 % of amino acid identity) is suf-
ficient to ensure that two genes are homologous. It is
possible that two genes with high amino acid identity (e.g.
50 %) are non-homologous (by convergent evolution) or
genes with low amino acid identity (e.g. 30 %) are
homologous (by functional divergence). This type of cri-
teria (e.g. amino acid identity) is used because there is no
statistical elements to designate homology, and this occurs
because systematics is a historical science with particular
epistemological limitations (Cleland 2002). For example,
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the information used for the evolutionary reconstruction
arises from the observation, and not from the design and
execution of experiments. This means that, in many cases,
the results of phylogenetic analysis are accepted by the
scientific community but with certain precautions.

The divergence of orthologous genes coincides with and
is a product of the divergence of the species in which they
are included (Fig.5). Naturally, orthologous genes are
evolutionarily more closely related and are therefore
expected to have a similar biological and biochemical
function. Robust methods for finding orthologs are based
on the analysis of phylogenetic trees. For orthologous
assignment, the trees have to be congruent (same topology)
with the species tree (Fig. 5).

Different phylogenetic reconstruction methods, such as
maximum parsimony, minimum evolution, and neighbor-
joining, are available within freely accessible evolutionary
software packages such as MEGA (Tamura et al. 2011).
These methods compare the nucleotide or amino acid
sequences using different parameters of genetic distance
and parsimony but, in all cases, independent of the
reconstruction method used, the number of possible phy-
logenetic trees increases exponentially with the number of
sequences (Li 1997). Since a congruent pattern is only one
topology, the probability that a congruent pattern occurs by
chance is practically null. For example, when a phyloge-
netic tree has only 20 sequences, the probability to obtain a
congruent pattern by chance (congruent pattern/possible
trees) is 1/2 x 10*! ~ 0 (Fig. 6).

As described previously works on AQP evolution con-
tained numerous inaccuracies in methods and/or

Fig. 6 Exponential function

describing the relationship 10%'
between number of possible 10%
unrooted phylogenetic trees and 10"
number of genes or proteins 10"
analyzed 10"
10"
10 15
10 14
10 13
10 12
10 11
10 10
10°

10°

107

10°

10°

10*

10°

10

10

Numer of possible unrooted trees (Nr)

interpretation of results, but this does not imply that by
correcting these problems would be possible to obtain a
consistent phylogeny, especially considering that AQPs
constitute a broadly diversified family of genes.

The Novel Paradigm of AQP Evolution: Vertical
Transfer

In this complex background, the phylogeny of eukaryotic
AQPs has been recently re-evaluated by restricting the
analysis to proteins with high amino acid identity (>25 %)
and using sequences from well-characterized species of
flowering plants and vertebrates (Soto et al. 2012). Since
members of the subfamilies PIPs, TIPs, NIPs, and SIPs from
flowering plants and AQPs plus aquaglyceroporins from
vertebrates met the requirement of amino acid identity
(>25 %), were included in the analysis. In contrast, the
subfamilies XIPs, GIPs, and HIPs were not analyzed
because they did not meet that requirement. As previously
explained, this result does not imply that the XIPs, GIPs, and
HIPs subfamilies are not homologous to the rest of eukary-
otic AQPs, but shows that it was not possible to analyze their
evolution according to the strict criterion of selection of
proteins included within a same phylogenetic tree.

This strict criterion has shown congruence between
AQPs (210 proteins) and organismal (13 species of
eukaryotes) trees (Soto et al. 2012). The probability of
finding a congruent pattern (vertical transfer) by chance
was practically null. The advantage of this new perspective
is that its congruence allowed defining clusters of

Nr = (2n-3)!! = (2n-3)!1/(2*2(n-2)!)

100 T 7
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Fig. 7 Schematic representation of orthologous gene clusters in plants based on Soto et al. (2012)
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Fig. 8 Schematic representation of orthologous gene clusters in animals according to Soto et al. (2012)
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orthologous genes for both flowering plants (19 clusters;
Fig. 7) and vertebrates (13 clusters; Fig. 8). This leads to
the description of specific conserved motifs for each
orthologous cluster as a useful tool for automatic assign-
ment of orthologs (Fig. 9) (Soto et al. 2012). The identi-
fication of conserved motifs in each subfamily and in each
cluster of orthologous genes offers a framework for
studying the possible functional implication of such motifs.
This is a powerful tool, and the availability of new gen-
omes of flowering plants and vertebrates could serve to
define these motifs more precisely.

This paradigm offers the opportunity to establish a new
classification of eukaryotic AQPs based on their evolu-
tionary relationships. In this way, the current nomenclature
differs significantly from a nomenclature based on the
identification of orthologous genes. Although the nomen-
clature is important per se, it also has significant influence
in the functional field. For example, given the current
nomenclature, AtPIP2;6 of Arabidopsis can be considered
the equivalent protein (ortholog) of OsPIP2;6 of Oryza
sativa, suggesting an equivalent role in both plants. How-
ever, AtPIP2;7 and AtPIP2;8 are equally related to Os-
PIP2;6 expecting similar functions for all these proteins
(Soto et al. 2012). Another advantage of having clusters of
orthologous genes is the possibility of evaluating evolu-
tionary constraints. The fact that PIPs have greater evolu-
tionary constraints than TIPs, NIPs, and SIPs, support the
prediction of greater functional constraints for PIPs (Soto
et al. 2012). In turn, some of the TIPs and NIPs orthologous
gene clusters also showed high evolutionary constraints,
suggesting functional constraints.

This AQP phylogenetic framework for flowering plants
and vertebrates can be used to predict a putative function of
individual AQPs on the basis of orthologous genes from A.
thaliana and Homo sapiens. However, the separate iden-
tification of clusters of orthologous genes in plants and
vertebrates does not allow extrapolating the function
between AQPs belonging to organisms of both kingdoms.
As previously suggested by other phylogenetic analyses
(Cerda and Finn 2010; Finn and Cerda 2011; Tingaud-
Sequeira et al. 2010), our phylogenetic framework revealed
that each subfamily of plant AQPs was related to a sub-
family of animal AQP, thus showing a pattern of vertical
transfer which predicts the presence of at least four families
of AQPs in the ancestral eukaryote from which plants and
vertebrates derived (Soto et al. 2012). We suggest that the
four AQPs subfamilies described in animals (AQPI-,
AQP8-, AQP3-, and AQP11-like) and plants (PIP-, TIP-,
NIP-, and SIP-like) are derived from four ancestral AQPs
subfamilies: A-D, respectively (Fig. 10). Thus, a pattern of
vertical transfer in the evolution of AQPs of animals and
plants at all levels, i.e., within (Figs. 7, 8) and between
kingdoms (Fig. 10), was observed.
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subfamily TGINPARS [FIL]

CL1 MEGK
CL2 M[AG]KX
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TIP-like
subfamily [AG][AGS]MNPA[CRSV] [ASVIF
CL1 EFISTLIFVXAGX..eees.. NILAGGAFXGASMNPAVXF
CL2 EFXSMXIFVFAGX...cess. NILXGGAFDGASMNPAVSF
CL3 EFIATLLFVFAGV........ NILAAGPFSGGSMNPARSF
CL4 EXXXTXXFVFAXE........ NXLXGGPFXGAXMNPARXF
CL5 EFXSTLXFVFAGV........ NILXAGPFSGGSMNPARSF
CL6 EXXXTFLFVFXGV....00.. NXXAGXXXXGASMNPARSF
CL7 EFXSTFXXVXXXV..eeooo. XVLAAGXXXGXSMNPAXXF
NIP-like
subfamily [AG]S[LM]NP[AGVIR[ST] [ILV]
CL1 EXXGTY...... NVXXAXXXXXASMNPXRXX
cL2 NVFVAGPXSGASMNPARSX
CL3 EXXGTF...... XSIXAGXXSGGSMNPARTL
cL4 NILXXGPXXGXSMNPVRXL
CL5 NIXIAGXXTXASMNPVRTL
CL6 XXLXXGXXXGXSXNPARXL
SIP-like
subfamily [LM]NPAXXXXWA

CL1l [FY]INP[TC]
CL2 [FY]INP [AS]
CL3 [FY]NPL

Blue are hydrophobic residues: ACFILVWM
Fuchsia are large hydrophobic aminoacids: FIWLM
Green are polar aminoacids: NQST

Pink are negative residues: DE

Red are positive residues: KRHGPY

Fig. 9 Motif characterization of plant aquaporins. Illustration of
amino acid motifs for each subfamily (PIPs, TIPs, NIPs, and SIPs)
and each orthologous cluster (CL). The letter X represents similar
amino acids. Blue, fuchsia, green, pink, and red letters represents
hydrophobic (ACFILVWM), large hydrophobic (FIWLM), polar
(NQST), negative (DE) and positive (KRHGPY) amino acids,
respectively (Color figure online)
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Fig. 10 Evolution of MIP superfamily in plants and animals. The
hypothetical ancestral eukaryote has four AQP subfamilies (AD)
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Functional Transfer of Eukaryotic AQPs Under
the Novel Evolution Paradigm

This new framework allowed the comparison for each
individual protein of the evolutionary patterns together
with the described functions. We previously showed a
correlation between the phylogenetic analysis and the
functional information of 47 AQPs (Soto et al. 2012).
Tables 1 and 2 describe the evolutionary location (sub-
families A-D), their current nomenclature, and molecules
that they transport, the organisms that contain them for 106
AQPs that showed strong correlation between evolutionary
and functional data.

AQPs of the subfamily A (PIP- and AQP1-like)
transport water and also CO, as a common ancestral
feature. Afterward, some AQPs of this subfamily acquired
the capacity to transport other solutes, like glycerol, urea,
and hydrogen peroxide. Some AQPs show poor water
transport, however, they are permeable to anions as is the
case of AQP6 (Table 2). Among PIPs, PIP2s transport
water, whereas for PIPls there is a great functional
divergence: some reports show that PIP1s do not form
functional homotetramers in plasma membrane (Fetter
et al. 2004; Zelazny et al. 2007), or that it transports CO,,
or that it has low water transport capacity (Table 1).
Several reports showed that PIP1 is localized in the
plasma membrane only when it is expressed together with
PIP2 (Bellati et al. 2010; Fetter et al. 2004); if it is
expressed alone, then it is retained in the endoplasmic
reticulum (Fetter et al. 2004; Jozefkowicz et al. 2013;
Zelazny et al. 2007). In this context, the possibility of
PIP1-2 hetero-oligomerization became a new way of
regulation of water transport.

AQPs of the subfamily B (TIP- and AQPS8-like)
transport water and urea. However, many reports have
demonstrated that several Arabidopsis TIPs transport not
only urea but also ammonia (Table 1). In particular, as it
is discussed later, AfTIP5;1 is an urea transporter that
belongs to the most divergent cluster of Arabidopsis TIPs
(Soto et al. 2010), suggesting that this function could be
ancestral. Furthermore, the ability to transport hydrogen
peroxide could also be an ancestral feature, as several
members of this subfamily share this capacity. Interest-
ingly, new features appeared after functional divergence
because some AQPs of this subfamily transport glycerol
(Table 1).

AQPs of the subfamiliy C (NIP- and AQP3-like) are
named aquaglyceroporins because almost all members of
this group transport water and glycerol (Tables 1, 2). The
transport of metalloids may be an ancestral feature as many
plant NIPs and also AQP7 and -9 transport arsenite.
AQP10 was found to be expressed in the small intestine

and transport water, glycerol, and urea (Table 2). The fact
that urea and boric acid transport was observed only in the
animal and plant members of this subfamily, respectively,
suggest that the transport of glycerol and urea might not be
an ancestral feature but a putative event of functional
divergence. Additionally, it was reported that many NIP-
like AQPs transport other compounds, such as formamide
and lactic acid (Table 1).

AQPs of the subfamily D (SIP- and AQPI11-like)
include the most recently identified AQPs. They are
unusual because only the second NPA motif located in
LE is conserved while the NPA motif in LB loop is
modified, such as NPC in AQP11 and AtSIP1;2 or NPT in
AQP12 and AtSIPI;1 (Soto et al. 2010). Also, their
N-terminal tail is shorter than the N-terminal of the rest of
the AQPs, a characteristic that has been assigned to
explain their intracellular localization (Maeshima and Is-
hikawa 2008). Due to this, it has been difficult to estab-
lish their transport substrate specificity when expressed in
Xenopus oocytes.

In summary, although AQPs from all subfamilies show
different pattern of solute transport, all AQPs are perme-
able to water and so, this can be considered the ancestral
feature shared by all the four subfamilies.

The potential of the proposed evolutionary framework in
the prediction of functionality of plants and animals AQPs
can be illustrated, with the example of the animal AQP8 and
plant TIPs both members of the subfamily B (Fig. 7).
Within TIPs, the cluster 7, includes AtTIP5;1 of A. thaliana,
which is the most divergent TIP and therefore the most
similar to the ancestral protein that gave rise to all TIPs
(Fig. 7). Therefore, the evolutionary framework predicts
that AQP8 would have a function equivalent to that of
TIPS;1. It was described that TIP5;1 is an urea transporter
located in pollen tube mitochondria when overexpressed in
the pollen vegetative cell of A. thaliana (Soto et al. 2008,
2010). Based on these results, it has been proposed that
AtTIP5;1 would be involved in the efflux of urea from
mitochondria during the urea cycle (Soto et al. 2010). The
urea cycle is well conserved in all living organisms
(Goldraij and Polacco 2000; Kojima et al. 2006; Mobley
et al. 1995; Pedrozo et al. 1996; Yu et al. 1997): urea is
synthesized by a mitochondrial arginase and degraded by a
cytosolic urease. Therefore, a mitochondrial transporter that
would export urea from the mitochondrion into the cytosol
has been predicted for many years discarding the possibility
of a passive transport (Rodela et al. 2008). Due to AQPS is
the putative ortholog of AtTIPS;1 (Fig. 10), our phyloge-
netic framework predicts that AQPS is involved in the urea
cycle in vertebrates as it was suggested previously (Cala-
mita et al. 2006, 2007; Holm et al. 2005; Liu et al. 2006;
Soria et al. 2013).
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Table 1 Functional characteristics of plants AQPs disaggregated by subfamily

H,O Gly NH; Urea B As H,0O, O References
SF A

AtPIP1;1 + - Hooijmaijers et al. (2012), Kammerloher et al. (1994)

AtPIP1;2 + - Heckwolf et al. (2011), Hooijmaijers et al. (2012), Kammerloher
et al. (1994), Tournaire-Roux et al. (2003)

AtPIP1;3 + - Hooijmaijers et al. (2012), Kammerloher et al. (1994)

AtPIP1;4 - Hooijmaijers et al. (2012)

AtPIP1;5 - Hooijmaijers et al. (2012)

NtAQP1 + + Biela et al. (1999), Otto et al. (2010), Uehlein et al. (2003)

ZmPIP1;2 - Bienert and Chaumont (2013)

ZmPIP1;5 + + Gaspar (2003)

SsAQP1 - + Moshelion (2002)

AtPIP2;1 + +/— Bienert et al. (2007), Dynowski et al. (2008), Hooijmaijers et al.
(2012), Kammerloher et al. (1994)

AtPIP2;2 + + Hooijmaijers et al. (2012), Kammerloher et al. (1994), Tournaire-
Roux et al. (2003)

AtPIP2;4 + + Dynowski et al. (2008), Hooijmaijers et al. (2012)

AtPIP2;3 + - Daniels et al. (1994), Hooijmaijers et al. (2012)

AtPIP2;5 + + Hooijmaijers et al. (2012)

AtPIP2;6 - Hooijmaijers et al. (2012)

AtPIP2;7 + Hooijmaijers et al. (2012)

AtPIP2;8 - Hooijmaijers et al. (2012)

ZmPIP2;1 + Fetter et al. (2004)

ZmPIP2;4 Fetter et al. (2004)

ZmPIP2;5 + Bienert and Chaumont (2013), Chaumont et al. (2001), Fetter et al.
(2004)

MCcPIP2;1 + - - Amezcua-Romero et al. (2010)

SoPIP2;1 + Johansson et al. (1998)

SsAQP2 + - Moshelion (2002)

OsPIP2;1 + Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;2 + Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;3 + Matsumoto et al. (2009), Mosa et al. (2012), Sakurai et al. (2008)

OsPIP2;4 + + Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;5 + Matsumoto et al. (2009), Sakurai et al. (2008)

OsPIP2;6 + + Matsumoto et al. (2009), Mosa et al. (2012)

OsPIP2;7 + + Matsumoto et al. (2009), Mosa et al. (2012)

OsPIP2;8 + Matsumoto et al. (2009)

NtPIP2;1 + Bots et al. (2005), Otto et al. (2010)

SFB

AtTIP1;1 + - + +  + Bienert et al. (2007), Klebl et al. (2003), Liu et al. (2003), Maurel
et al. (1993)

TeTIP1;1 + + + + Azad et al. (2008, 2012)

AtTIP1;2 + + Bienert et al. (2007), Liu et al. (2003)

OsTIP1;2 + + Li et al. (2008), Sakurai et al. (2008)

TgTIP1;2 + + + + Azad et al. (2008, 2012)

AtTIP1;3 + — + - Soto et al. (2008)

AtTIP2;1 + + + Klebl et al. (2003), Liu et al. (2003), Loque et al. (2005), Maurel
et al. (1993)

OsTIP2;1 + =+ Li et al. (2008)

TaTIP2;1 + + + Holm et al. (2005), Jahn et al. (2004)

TaTIP2;2 + + Bertl and Kaldenhoff (2007)
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Table 1 continued

H,O Gly NH; Urea B As H;O0, CO, I O References
AtTIP2;3 + + + Dynowski et al. (2008), Loque et al. (2005)
AtTIP3;1 + Eckert et al. (1999)
OsTIP3;2 - + Li et al. (2008)
OsTIP4;1 + + Li et al. (2008)
AtTIPS;1 + - + Soto et al. (2008)
NtTIPa + + + Gerbeau et al. (1999)
SF C
AtNIP1;1 + + + - + Dynowski et al. (2008), Kamiya and Fujiwara (2009), Kamiya et al.
(2009), Weig and Jakob (2000)
AtNIP1;2 + + Dynowski et al. (2008), Weig and Jakob (2000)
AtNIP2;1 + + + + Choi and Roberts (2007), Mizutani et al. (2006)
AtNIP4;1 + Soto et al. (2008)
AtNIP5;1 + + + Bienert et al. (2008), Mitani-Ueno et al. (2011), Takano et al.
(2006)
AtNIP6;1 - =+ + =+ + Bienert et al. (2008), Tanaka et al. (2008), Wallace and Roberts
(2005)
AtNIP7;1 —+ + + + + Bienert et al. (2008), Li et al. (2011)
CpNIP1 + Klebl et al. (2003), Liu et al. (2003)
GmNOD26 + + + - — 4 Dean et al. (1999), Hwang et al. (2010), Rivers et al. (1997),
Schnurbusch et al. (2010), Wallace et al. (2012)
HvNIP2;1 + - + + Ligaba et al. (2011), Schnurbusch et al. (2010)
LjLIMP2 + + + Guenther and Roberts (2000)
LjNIP5;1 + + Bienert et al. (2008)
LjNIP6;1 =+ + Bienert et al. (2008)
OsNIP1;1 + Ma et al. (2008)
OsNIP2;1 + + + + Mitani-Ueno et al. (2011), Mitani et al. (2008)
OsNIP2;2 + + + Bienert et al. (2008), Ma et al. (2006, 2008), Mitani-Ueno et al.
(2011), Mitani et al. (2008)
OsNIP3;1 + Ma et al. (2008)
OsNIP3;2 + Bienert et al. (2008)
PsNIP1;1 + + Schuurmans et al. (2003)
PtNIP1;1 + + Ciavatta et al. (2001)
TaNIP2;1 + Montpetit et al. (2012)
ZmNIP2;1 + 4+ Gu et al. (2012), Mitani et al. (2009)
ZmNIP2;2 4+ Mitani et al. (2009)
ZmNIP2;4 + Gu et al. (2012)
SF D
AtSIP1;1 + Ishikawa et al. (2005)
AtSIP1;2 + Ishikawa et al. (2005)
AtSIP2;1 - Ishikawa et al. (2005)
+, presence; —, absence; +/—, controversy between authors. Plants: At, Arabidopsis thaliana; Cp, Cucurbita pepo; Gm, Glycine max; Hv,

Hordeum vulgae; Lj, Lotus japonicus; Mc, Mesembryanthemum crystallinum; Nt, Nicotiana tabacum; Os, Oryza sativa; Ps, Polygonum sibir-
icum; Pt, Pinus taeda; So, Spinacia oleracea; Ss, Samanea saman; Ta, Triticum aestivum; Tg, Tulipa gesneriana; Zm, Zea mays

SF subfamily, Gly glycerol, B boric acid, As arsenic, / ions, O other compounds (e.g., formamide and lactic acid)
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Table 2 Functional characteristics of vertebrates AQPs disaggregated by subfamily

H,O Gly NH; Urea B As H,O, CO, I O References
SF A
BtAQPO + + Mulders et al. (1995), Yang and Verkman (1997), Zampighi et al.
(1985)
HsAQPO + + Chandy et al. (1997)
DrAQPO + Froger et al. (2010)
SaAQPOa + Chauvigne et al. (2013)
RnAQP1 + + - + 4+ — Abrami et al. (1995), Li et al. (2011), Ma et al. (1993), Marinelli
et al. (1997)
DrAQP1 + - - Tingaud-Sequeira et al. (2010)
HsAQP1 + + + + + Abrami et al. (1995), Endeward et al. (2006), Preston et al. (1992),
Anthony et al. (2000), Herrera et al. (2006), Musa-Aziz et al.
(2009), Nakhoul et al. (1998), Prasad et al. (1998)
SaAQPlaa/ + Chauvigne et al. (2013)
ab
HsAQP2 + + - - - Abrami et al. (1995), Fushimi et al. (1993), Geyer et al. (2013),
Meinild (1998), Yang and Verkman (1997)
DrAQP4 + Tingaud-Sequeira et al. (2010)
RnAQP4 =+ +/— - - =+ Fenton et al. (2010), Geyer et al. (2013), Jung et al. (1994), Meinild
(1998), Musa-Aziz et al. (2009), Yang and Verkman (1997)
RnAQP4 + - - - - Fenton et al. (2010), Geyer et al. (2013)
RnAQP5 + Raina et al. (1995), Yang and Verkman (1997)
HsAQP5 + - - + Meinild (1998), Musa-Aziz et al. (2009)
HsAQP6 + + + 4+ + Holm et al. (2004), Liu et al. (2006), Ma et al. (1996)
RnAQP6 - + + + 4+ Geyer et al. (2013), Hazama et al. (2002), Ikeda et al. (2002), Liu
et al. (2006), Yasui et al. (1999)
SFB
HsAQPS8 + - + - + - + Bienert et al. (2007), Geyer et al. (2013), Jahn et al. (2004), Liu
et al. (2006)
RnAQP8 + +/- + +/— + Holm et al. (2005), Ishibashi et al. (1997), Koyama et al. (1997),
Liu et al. (2006)
DrAQP8 + - + Tingaud-Sequeira et al. (2010)
SaAQP8b  + + Chauvigne et al. (2013)
SF C
RnAQP3 + + + + + - — 4+ Echevarria et al. (1994), Geyer et al. (2013), Hara-Chikuma et al.
(2012), Holm et al. (2005), Ishibashi et al. (1994), Meinild
(1998), Yang and Verkman (1997), Zeuthen et al. (1997)
DrAQP3 + + + + Chauvigne et al. (2011), Tingaud-Sequeira et al. (2010)
HsAQP3 + + + Chauvigne et al. (2011), Liu et al. (2004)
HsAQP7 =+ + - Geyer et al. (2013), Liu et al. (2004)
MmAQP7 + Liu et al. (2002)
RnAQP7 + + + Ishibashi et al. (1997), Kishida et al. (2000)
DrAQP7 + + + + Chauvigne et al. (2011), Tingaud-Sequeira et al. (2010)
SaAQP7 + + + Chauvigne et al. (2013)
RnAQP9 + + + + + + Geyer et al. (2013), Liu et al. (2002), Tsukaguchi et al. (1999)
DrAQP9 + + + + Chauvigne et al. (2011), Tingaud-Sequeira et al. (2010)
HsAQP9 Liu et al. (2004), McDermott et al. (2010)
SaAQP%  + + + Chauvigne et al. (2013)
HsAQP10 + + + Hatakeyama et al. (2001), Ishibashi et al. (2002), Liu et al. (2004)
DrAQP10  + + + Tingaud-Sequeira et al. (2010)
SaAQP10b + + + Chauvigne et al. (2013)
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Table 2 continued
H,O Gly NH; Urea B As H;O, CO, I O References
SF D
MmAQPI1 + Yakata et al. (2007, 2011)
HsAQP11  + Ikeda et al. (2011)
+, presence; —, absence; +/—, controversy between authors. Animals: Ac, Anomala cuprea; Bg, Blattella germanica; Bt, Bos taurus; Ba,

Bemisia tabaci; Dr, Danio rerio; Gg, Gallus gallus; He, Hyla chrysoscelis; Hs, Homo sapiens; Mm, Mus musculus; Rn, Rattus norvegicus; Sa,

Sparus aurata

SF subfamily, Gly glycerol, B boric acid, As arsenic, / ions, O other compounds (e.g. formamide and lactic acid)

Conclusions and Prospects

The AQP vertical transfer hypothesis makes predictions that
are testable and refutable, as we have demonstrated
throughout the text so far. This new paradigm of evolution
of plant and animal AQPs offers a novel framework to
integrate functional information. It allows two distant
groups, the plant and animal AQPs, to work together and
support each other, especially in understanding water and
solute transport. Furthermore, the availability of new clus-
ters of orthologous genes and specific motifs associated
with such clusters offers a starting point for an in-depth
understanding of the consensuses and tridimensional
structures associated with the functional diversity of AQPs
in the specificity of transport, interaction among AQPs and
with other molecules, including regulation and subcellular
localization. In this context, it is expected that the new
consistent evolutionary framework of eukaryotic AQPs
increases the ability to properly predict biochemical and
biological functions of AQPs. Functional information of
individual AQPs by empirical studies is expected to grow
and more sequenced genomes of plants and animals are
expected to be available, positively influencing the defini-
tion and precision of motifs and functions of each cluster of
orthologous genes and each AQP subfamily. However, it is
necessary to point out that the extrapolation of functionality
has the intrinsic restriction of the biochemical and biolog-
ical diversification processes. For example, the extrapola-
tion of the biochemical and biological functions of the
ancestor of flowering plants is not always possible because
each of the clusters of orthologous genes in monocotyle-
donous and dicotyledonous plants evolved independently,
incorporating and eliminating various functions related to
AQPs. Similarly, although certain features of cell func-
tionality may have been conserved in all vertebrates, it is
not expected that the AQPs of fishes and mammals have
exactly the same biochemical and biological function,
especially when they are exposed to different environments
that would potentiate their functional divergence. Finally,
the future of the experimental study of AQPs seems to have
evolutionary guidance, which, despite its limitations con-
stitutes a solid road toward a better understanding of AQPs.
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